반도체 웨이퍼 가공을 위해 미세 유동 레이저 장비를 선택하는 이유

다른 화면
December 16, 2025
카테고리 연결: 과학적인 실험실 장비
개요: 이 워크스루에서는 주요 설계 아이디어와 성능으로의 변환 방식을 강조합니다. 마이크로유체 레이저 장비가 반도체 웨이퍼 가공을 위해 머리카락 굵기의 물줄기를 사용하여 레이저 에너지를 안내하는 방식을 살펴보세요. 이 하이브리드 마이크로머시닝 방법이 SiC 및 GaN 웨이퍼와 같은 단단하고 깨지기 쉬운 재료에서 열 손상을 줄이고 오염을 방지하며 가장자리 품질을 향상시키는 방법을 알아보세요.
관련 제품 특징:
  • Hybrid micromachining method coupling a thin water jet with a laser beam for precise energy delivery.
  • Total internal reflection guiding mechanism ensures accurate laser beam transmission to the workpiece.
  • Continuous cooling and debris removal during processing for a cleaner, more stable operation.
  • Reduces heat-affected damage, contamination, oxidation, and microcracks in semiconductor materials.
  • Supports various laser wavelengths (1064 nm, 532 nm, 355 nm) and power levels up to 200 W.
  • Configurable nozzle diameters from 30-150 μm using sapphire or diamond materials.
  • High-precision positioning with accuracy up to ±5 μm and repeatability of ±2 μm.
  • Applicable to advanced packaging, wafer dicing, chip drilling, and defect repair processes.
자주 묻는 질문:
  • What is microjet laser technology?
    Microjet laser technology is a hybrid micromachining process where a thin, high-velocity water jet guides a laser beam using total internal reflection, delivering precise energy to the workpiece while providing continuous cooling and debris removal.
  • What are the key advantages of microjet laser processing versus dry laser processing?
    Key advantages include reduced heat-affected damage, less contamination and redeposition, lower risk of oxidation and microcracks, minimized kerf taper, and improved edge quality on hard and brittle semiconductor materials.
  • Which semiconductor materials are best suited for microjet laser processing?
    It is particularly well-suited for hard and brittle materials like silicon carbide (SiC) and gallium nitride (GaN), as well as silicon wafers, ultra-wide-bandgap materials such as diamond and gallium oxide, and selected advanced ceramic substrates.
관련 비디오